
Augmented Sound

A thesis submitted to the Faculty of

The College of Imaging Arts and Sciences

in candidacy for the degree of

Master of Fine Arts

Rochester Institute of Technology

College of Imaging Arts and Sciences

School of Design

Graduate Computer Graphics Design MFA Program

Thesis Committee

Shaun Foster, Chris Jackson, Nancy Doubleday

Berio Molina February 2011

Thesis for the Master of Fine Arts Degree
Rochester Institute of Technology

College of Imaging Arts and Sciences
School of Design

Computer Graphics Design

Title: Augmented Sound
Submitted by: Berio Molina

Date: February 21, 2011

Thesis Committee Approval:

Chief Adviser: Assistant Professor Shaun Foster, Computer Graphics Design

Signature of Chief Adviser Date

Associate Adviser: Associate Professor Chris Jackson, Computer Graphics Design

Signature of Associate Adviser Date

Associate Adviser: Associate Professor Nancy Doubleday, Interactive Games & Media

Signature of Associate Adviser Date

School of Design Chairperson Approval:

Chairperson, School of Design: Patti Lachance

Signature of Chairperson Date

Abstract

1. Project Definition

1.1 Introduction

1.2. Inspiration

2. Keyworks

3. Research

3.1. Software

3.2. Hardware

3.3. Art Style

4. Review of Literature

5. Process

5.1. Initial Sketches

5.2. Hardware Implementation

5.3. Art Style

5.4. Sound Design

5.5. Configuration Window

Conclusion

Bibliography

Appendix A. Coding

Appendix B. Thesis proposal

1

2

2

2

5

6

6

6

7

8

10

10

13

15

20

20

24

25

26

37

Abstract

A Computer Vision System for doing Interactive Installations

This thesis is a computer vision system for doing interactive-creative musical installations: A portable
computer vision system based on video projection and a green laser, that allows the interaction with

the projection itself, with the physical space where it is projected and with multiple users.

By using a green laser as a physical user interface, people create projections of sound balls that are

projected on top of objects. These balls interact with the physical characteristics of the object where
they are projected, as well as with other balls that where previously created in the same space. When

this interaction happens they produce sound, which varies depending on several rules that are initially
set up. Depending on the complexity of this interactive relationships between the projection (balls),

the space where the projection is projected (objects) and the user, it creates a new aesthetic sound and
visual layer as an expansion of the object that can also be called augmented sound.

1

1. Project Definition

1.1. Introduction

This thesis is about transforming video projection into a musical user interface. In this case the focus

of the research is not the content of the video projection but the projection itself and where it is
projected. Usually, the surface where a video, game, animation, interactive work is projected is a solid

plane without any kind of significant information. Normally it is a white wall, or a screen especially
designed for receiving the light of the projector, but rarely is it considered as one more element that

could be used for aesthetics purposes. This becomes especially true when we talk about musical
interfaces. Therefore, this thesis researches about how the content of a video projection interacts with

the physical space of a surface or object where it is projected, and also how users interacts with both
space and content projection to make any kind of sound performance. In addition, the system is

mobile and able to adapt to different physical spaces fast. So this thesis is a system for developing
interactive musical installations that deal with the interaction between the projection itself, the

physical space where images are projected and the user that controls what is being projected.

This thesis uses concepts related to computer vision technology like color tracking, mapping and

image warping. It also use tools like firewire cameras, laser and video projectors. The software used
for mapping and interpreting data from physical objects is a c++ library called Openframeworks,

which is being developed by Zachary Lieberman and Theodore Watson, and which is being used by
several creators for building interactive artistic works and for creating experimental creative code.

1.2. Inspiration

Where does this idea come from?

The idea for this thesis came after combining 3 projects about computer vision and interaction. The

first one was the Graffiti research lab project, developed at the eyebeam lab by F.A.T (Free art and
technology). The second one was the project called Artificial Dummies done by the Italian group

called DOMO. The last one was the project called Funky forest by Theodore Watson.

Laser tracking by Graffiti Research Lab

What was found interesting about this project is the use of a Green Laser as user interface for
interacting with the application. Moreover, the act of manipulating the Laser provokes some kind of

magic that is really attractive to people. They feel that they can “touch” the surface by just pointing
the green bean to it and they can interact in long distances, which makes it very useful for urban

actions or installations.

2

The first version of the software that was written for this thesis was based on the software that GRL
wrote for developing Laser tag. It was an incredible resource of code and I took several algorithms

from it.

Artificial Dummies by DOMO:

The main idea that we found interesting about this project was the interaction with physical space.

The video projection on the wall not only recognizes the shapes of the wall itself, but interacts with it.
The animals move throughout the ston surface using steering behaviors and boids algorithms, and

they identify the windows of the wall as obstacles that they avoid. The capacity of a projector to
interact with the shape of the surface where it is projected is what we found interesting.

3

Funky Forest by Theodore Watson:

The concept that was adopted for this project is based on the idea of user interaction. This installation
is all about user interaction and what is really interesting about it is how well mapped body

movements are and how well they relate to virtual feedback. This body map library of physical
gestures is not used in the thesis, but the concept of user interaction is quite important for drawing the

thesis conceptual triangle, which vertex are: user interaction, physical user interfaces and interaction
with physical spaces.

Sound is also added as an element that glues all these concepts together.

Funky Forest project ---------------------------- User Interaction

L.A.S.E.R. Tag ---------------------------- Physical User Interface (Green Laser)

Artificial Dummies ---------------------------- Interaction with physical space

Thesis Project ---------------------------- Sound + 3 listed concepts.

4

2. Keywords

Augmented sound

Sound balls

Laser Tag

Computer Vision

Openframeworks

Supercollider

Open Sound Control (OSC)

Mapping

Interactive art

Creative Code

5

3. Research

3.1. Software

Before choosing a software or library for developing the project, most of the concepts were developed

in different environments to see their performance and behaviour, and also for testing to see if that
environment could be the final one chosen for developing the application. These languages are

actionscript 3, Processing, Openframeworks, Puredata and Supercollider.

In actionscript 3 we tested some Craig Reynolds algorithms for related group behaviors that were not

implemented in the final version. This scripting language was eventually rejected because it couldn’t
deal with heavy processes.

Processing was used for testing object collision and also for solving other small coding problems. It
was used for sketching and there were a lot of examples and implementations of ideas that were to be

used in the thesis, it was also rejected because it lacked velocity to run several processes at the same
time.

Openframeworks was the selected library for writing the application for the following reasons. First,
It specializes in openCv and a lot of works made with this tool are about computer vision, which is the

technique used for laser tracing. Second, Theodore Watson, who is one of the creators of the
L.A.S.E.R. Tag project, is also a developer of Openframeworks, along with Arturo Castro and

Zachary Lieberman, and finally, it is written in c++, which is a faster language than processing or as3.

PureData and Supercollider are languages used for managing audio. The difference between them is

that PureDate has a graphical interface and adds one more level for programming, and also that
Supercollider is focused on live coding. Both of them support OSC, the protocol chosen for

comunicating with Openframeworks, and both of them have similar preformance in terms of velocity
and capacity. Supercollider was chosen in the end because it doesn’t use a graphical interface for

programming and makes it easier to compare code with openframeworks.

3.2. Hardware

+ User interface:

 At the beginning there were two candidates of user interfaces: A Wii remote + a Wii sensor bar

and a green laser.

 The green laser was selected for the following reasons:

 1. It can be used in large distances. Whereas Wii remote has to be close to the wii sensor bar
and makes it difficult to use it in public areas, where space gets wider. Since the intention of the thesis

project was to be portable, creating limitation with distance was a problem.

6

 2. Green Laser is very easy to use. While Wii remote has several buttons, green laser has one.
The Thesis goal was not user interaction itself but interaction with physical space. The important

point is not how user interacts or if is possible to do a wide range of things using an interface, the
main goal is to interact with physical spaces so user interaction must be as easier as possible.

Moreover a lot of people are already familiar with hot to turn on a laser. The main goal was to create a
user-friendly application that could interact with physical space

3.3. Art Style

The whole art style is based on one shape: a circle.

 This is the chosen shape for several reasons including the adaptability to several kinds of spaces,
sound visualization, it is easy to create and is an uniform shape.

Adaption to spaces:

One of the important clues of the thesis is interaction with physical spaces. Physical spaces sometimes

have irregular forms because of their organic anatomy. Circles are easy to interact with because of its
rounded shape. A circle can adapt better to an irregular form that a rectangle for example. This is

because circles don’t have a vertex and it is a regular and neutral form and ideal for interacting with
any kind of space.

Sound visualization:

One of the main points of the thesis is that a musical instrument expands or augment the sound of an

object. Sound is vibration and a common way to visualize vibration is throughout ways forms. Ways
forms are circles and it could be said that a ball is the emitting point of these ways forms. So it turned

out that like balls and circles were the perfect shapes for visualizing sound.

Simplicity:

Again, the main accomplishment of this thesis was to interact with physical space and the end user to
expand or augment the sound on these interactive objects. To accomplish this it was necessary to use a

lot of resources from the computer. For example, when laser tracking techniques are used, while
playing sound, generating visual content that is projected and when it is necessary to check the

interaction of this visual content with the physical space and with itself.

A circle is a very easy shape to generate in code and it doesn’t take many resources from the

computer.

7

4. Review of Literature

It was difficult to find books that were directly related to this thesis project, because interacting with
physical space using mapping techniques as well as manipulating a laser as an user interface device

are relatively new and they are not well documented yet. Besides, some books and resources were
really useful in order to solve concrete problems as well as help to get deeper understanding

interactive concepts.

Books

Making things talk
by Tom Igoe

O'Reilly 2007
This book is about connecting several hardware and software in order to communicate them and share

information. The final goal is helping on the technologic development of creative and interactive
works. For instance, learning how to communicate two different softwares will help me to convert

graphical data to sound data.

Processing. Creative Coding and Computational Art

by Ira Greenberg
Friendsof 2007

This book is very similar to the one written by Casey Reas and Ben Fry, that I referenced before. It is
about the processing code and explains how to use it. This book was also useful to me because it

allowed me to approach the same topic from a different point of view. This combination of using two
similar books for a same purpose was very useful because when I didn't understand what one book

said, I had another resource to look for the same information, which gave me a more wide view in
some aspects.

Creative Code
by John Maeda

Thames & Hudson 2004
Creative Code is a book written by John Maeda, and it shows works that students did under the MIT

Media Lab umbrella. It is a good way to see works where people use technology in a complete
innovative and strange way, just because they are trying to see the aesthetic side of the technology. I

think that this is the main idea I could see on this book. How technology's aesthetic can expand the
creative side of the technology and make us see things from a new point of view. It helped me to

expand my conceptions about technology and not be afraid to think “out of the box”.

8

Online Documentation

Openframeworks: Documentation

Interactive Architecture
Graffiti Research Lab

October, 2008
http://graffitiresearchlab.com/?page_id=32#video

This project is about doing generative graffiti interacting between a video projection and a physical
space. This is the base from where the thesis will be built. This is the only project that I have found

that combines the interaction between the projection, the physical space and the user, and because
they use open technology, it is easy to implement what they have done and push it further.

Zach Lieberman and Theodore Watson
September, 2008

http://www.openframeworks.cc/documentation
This is the documentation webpage of the Openframeworks library. The Openframeworks library was

created to make easier write c++ code for doinginteractive and creative works. This is the library that
I am going to use to develop the multitouch system and this is the software that I am going to use for

receiving physical data and convert it to a graphical environment. This online documentation of the
library is my primary resource that I look when I want to something about the library. It is like the

Openframework’s help.

Openframeworks: Forum

Openframeworks users
September, 2008

http://www.openframeworks.cc/forum
The Openframeworks forum is the way I keep in contact with other people that are using the same

technology that I am. It is also very useful for keep myself updated with the new projects that people
are developing. Moreover it is an indispensable place where I can ask for help, and also the first place

where I will get feedback from my works. Depending on the interaction in the forum and what the
other people tell me, my thesis changed in several ways.

Vimeo
Vimeo users

September, 2008
http://www.vimeo.com

This is the place where I found most of the projects that are related to multitouch, Openframeworks,
sound-visualization, Puredata, or interactive art. Moreover, this is the best way I found to track the

new projects that people is doing with this technology, thanks to the rss tag syndication. For instance,
I am syndicated to these three tags from Vimeo, which allow me to be informed of the new videos that

people have uploaded: “openframeworks”, “physicalcomputing”, “tangibleinteraction”.

9

http://graffitiresearchlab.com/?page_id=32#video
http://graffitiresearchlab.com/?page_id=32#video
http://www.openframeworks.cc/documentation
http://www.openframeworks.cc/documentation
http://www.openframeworks.cc/forum
http://www.openframeworks.cc/forum
http://www.vimeo.com
http://www.vimeo.com

5. Process

The working process for this thesis could be divided into four parts: Initial sketches, hardware
implementation, art styles, sound design, graphical user interface and configuration. First, there are

going to be presented some sketches that will show what the initial ideas were, how they would look
land possible concept solutions to achieve the goals stated in theses sketches. Second, some problems

and solutions related to the hardware used are going to be pointed out. Third, it is going to be
explained how different art styles are applied to different elements, and finally, the user interface is

going to be analyzed as well as the configuration window of the application.

5.1. Initial Sketches:

The initial idea was to build an interactive and musical installation that could interact with a physical
space. Using video projection we see which content would change depending on the interaction with

physical surface where it would be projected.

Here is a first sketch that shows how it would look:

10

The basic concept of the thesis can be found looking at the figure. There is user interaction with a
physical interface(a man pointing to the building with a laser), interaction with a physical space (balls

that bounce with windows and images that appear inside those window), and sound (the balls emit
sound).

This project was too ambitious so the next step was to narrow it down to make it more affordable. In
order to make it possible we applied the same concepts to smaller objects. Taking pictures of them

made it possible to imagine how the interaction could be applied.

Here are two examples. A window and a fountain.

Here we can see how the different parts of the window (spot1, spot2, spot3 ...) could be used as
different independent interaction spaces.

11

Here we can see how the holes of one side of the fountain could be used as interactive spaces. In this
case it could work as a musical sequencer if we think of each one as a musical track. Balls bouncing

inside each one of the spaces could be seen as instruments inside each musical track.

The same fountain

The image on the right shows how the laser could be used for limiting spaces. By drawing the shape
of a given space, it is possible to limit an interaction. In this case, we can see that the area is a

12

rectangle that is being drawn by the laser, and we can also see that there are four points that could
make it possible to move and re-locate the vertex of the rectangle.

The image on the left shows the possibility of using several lasers, so the interaction can be applied
for several users. The two lasers on the top project have different shapes, a circle and a triangle,

making it possible for the computer to identify them and give them a unique ID, so they could be
tracked.

The two laser drawings from the bottom follow the same concept, but instead of using different
shapes it tries to identify them by building several clusters of lasers with a different number of them,

so depending on the number of lasers in the cluster, they can be identified.

5.2. Hardware implementation

The special hardware used for this thesis, besides computer, are Green Laser, video-projector and a

firewire camera.

Green Laser:

The one used for this thesis is a green laser manufactured by wicked lasers with a maximum output
power of 40mW. The color of the laser is important because color green is easiest to track by the

computer. Moreover, its power is important because the brighter and intense the bean is, the easier it
is to track, because the algorithm that deals with color detection use HSV color model (Hue,

Saturation and Value-Brightness), making a significant difference in the Brightness value and will
allow us to separate this color from the rest.

Video Projector:

13

The projector used is Epson EMP-X5 3LCD Projector, because it is cheap and is bright. It would be
necessary to use a much brighter projector if the interaction is used outside.

Camera firewire:

The camera used is Unibrain Fire-i digital camera, which is a really good camera for computer vision

experiments because it is firewire and works really good for streaming and because it can be manually
configured so you can change the white balance, brighness, velocity, etc... This is very important

because having the possibility of manipulating the color values used by the camera will allow the
addition of a primary filter for isolating the green color before arriving to the software processes.

It would be better to use a camera that can handle more frames per second, in order to follow the fast
movements made by the laser, but at the time this thesis was being developed, their price was quite

high.

14

5.3. Art Styles

Art design can be divided in two big blocks. The first one corresponds to the configuration screen,

and is going to be described in detail in point 5.5. The second one corresponds to the projection screen
and it holds the whole interactive and generative graphics.

As it was pointed out before, all graphics are balls, because they can adapt and interact easily with all
kind of shapes that spaces could have due to their regular form, because balls, points and circles

represent vibration and helps to visualize sound and because they are actually very easy to generate
and computers don’t require a great amount of resources.

These balls are grouped in two families: the color family and the behavior family.

The color family determines the sound of the balls, so depending of the color of the ball it will

generates a determined sound.

Sounds are grouped by frequency. Each one of the frequency group corresponds to a given color. This

relationship goes as follows:

Yellow ball --- High frequencies

Pink ball --- Mid-high frequencies

Blue ball --- Mid-low frequencies

Purple ball --- Low frequencies

The reason why sound is classified by frequencies is because each one has to occupy a place in the
audible space the same way a color occupies a place in the color spectrum. Actually they both are

frequencies.

The Behavior family determines how the balls interact with the space they belong and with other

balls.

They are classified in four type of balls: Regular Balls, Collision Balls, Mass Balls and Friction Balls.

15

Regular Balls:

These balls are generated by default. They move in a constant velocity and they bounce when they

find the limits of the space they belong. Each time they bounce they play the assigned sound related to
the color that was previously chosen. Their color has a low alpha percent so it is possible to see

through them.

Their shape is the simplest one. Just a colored dot.

Collision Balls:

These balls add a new behavior to the Regular ones, which is that they can collide into each other.
Each time they collide or bounce within the limits of their habitat (space) they emit sound. When

there are a lot of balls it produces a special sound, similar to the one generated by granular synthesis.

They are completely opaque and when they collide they produce repetitive waves that fade out and

become bigger while they disappear. This represents how sound propagates when there is a collision,
similar to when, for example, a stone is thrown into a river.

Mass Balls:

16

Mass balls can be big or small and it is possible to change their size while they are being created. If
they are also a collision ball they are stronger when they collide with others balls that are smaller in

size. If they are bigger that the space they belong, they produce strange and random noises, which
produces some interesting textures. The sound they produce has a high level volume. They move

slowly.

Friction Balls:

Friction balls are different for two reasons:

First, they produce a new kind of sound that is continuous and that is modified depending on where

the ball is located in the space and its velocity. If the ball has a low “y” coordinate, its frequency is
higher and vice-verse. Also, the x coordinate of the ball indicates where the head player of the sound

is located. In relation with velocity, if the ball goes fast the sound also plays fast and if the ball goes
slow the velocity of the sound will also decrease.

17

This ball has a tail that indicates velocity. If the tail is large this means that the ball goes fast and if the
tail is short this indicates that it goes slow.

18

19

5.4. Sound Design

Sound Design follows one big concept that is to expand and augment the sound generated by the

object where the projection is projected. In other words, imagine that there is a glass bottle. This
bottle emits a sound when it is snapped with a fork, for instance. Now imagine that instead of using a

fork we use the thesis balls, and imagine that when they hit the bottle, they then emit a sound.
However, the sound that they emit is not the sound of the fork knocking on the glass, but it is the

sound of a virtual ball hitting a physical bottle. So the sound should augment the natural sound of the
bottle according to the behaviors that we previously defined.

This idea of expanding physical sound by adding a virtual behavior related to the physical aspects of
the objects that emits the “real” sound is called: Augmented Sound.

So, all the sound that can be heard while interacting with the installation are filed recordings of the
real object where the projection is projected. For example, if we are projection on top of a curtain, all

sounds that are generated by balls interacting with it, are live manipulations made by those balls from
previous recordings.

5.5. Configuration Window.

In order to setup the whole interaction, a configuration window was designed where parameters like,

HSV values of laser tracking, coordinates of the warper vertex, etc... can be adjusted.

20

It is divided in 5 sections.

1. Shortcuts

 The first section called shortcuts, show us what keys of the keyboard have special actions:
"w" key switches between the camera view, which makes possible to see the video that is being

taken from the camera and the laser tracking view, which makes possible to see the blob generated
by the laser tracking algorithms.

"s" key is used to save laser tracking configuration. It means that it saves the HSV values and the
warping rectangle vertex points.

"x" key is used to save areas position and dimensions (they are going to be explained in more detail
later on)

"arrow keys" are used to navigate throughout HSV values in order to change them.
"d" key is used to delete areas (to do that, it is necessary to point the laser to an area and press "d").

"m" key is used to move areas (the laser must be pointed to one area, and then the “m” key should
be pressed. Then it is possible to move the area while moving the laser).

2. General Settings

21

This section of the configuration window is used to change some general configuration settings.

"Area resolution" is used to increase or decrease the number of points of the area. When there is an

organic shape, for instance a leaf, it would be interesting to increase resolution (that will add more
points), but when there is a less organic shape, for instance a rectangle, it would be interesting to

decrease resolution = less points.

"Line resolution" is used to make a line that is drawn when areas are created to look smoother. It is

not really important.

"Laser freeze" is a timeout used to freeze the laser tracking blob. It is useful when laser tracking is not

good enough due to light conditions, laser low battery.

"delete areas" is a button that deletes all areas when pressed.

"delete balls" is a button that deletes all balls when pressed.

"draw areas" is a switch-toggle button that allows drawing areas during configuration stage.

"visualize areas" is a toggle button that allows to visualize the areas and change their shape.

3. Tracking configuration

22

Here is where we change the HSV values for tracking the laser. Moving the arrow keys up, down, left
and right these values can be changed. Moreover here is where the x an y coordinates of the warp

rectangle of the right can be visualized.

4. Setting up camera view:

This section is used to warp camera frame. In order to change the warping rectangle it is necessary to
drag its vertex by using a mouse. Vertex is drawn as blue circles.

5. Visualizing laser tracking:

Here is where we visualize the laser. It is possible to switch between the camera view and the tracking
view by pressing the "w" key.

23

6. Conclusion

This thesis is about creating an interactive system that allows people to manipulate sound by

interacting with the physical characteristics of objects without touching them. Technically it plays
with video projections that interact with the shapes of the objects where they are projected and their

boundaries, as well as with the content of the projection itself.

At a very early stage of this project, I was planning to do something much bigger, especially because I

wanted to develop the whole project for interacting with building facades, with a lot more functions
for user to interact with. Then I soon realized I was too ambitious. I went in another direction and I

started to pay attention to little things and little objects. That was the moment when the whole thesis
concept took form and the idea of expanding sound aesthetic reality of objects using just their shape

appeared. I drew some sketches to imagine how that could be done and I tried to solve all the
problems stated in the sketches.

That was where I had the biggest conceptual breakthrough for this thesis. I had some clear ideas about
what I wanted to do and I had some detailed concept sketches but I didn’t know how to bring the

concept to life. It took me a long time to realize how to track the green color of a laser, and how to
memorize shapes that were drawn by the laser, for instance, but I tried to do exactly what was

presented in those initial sketches. I didn’t know anything about programming in c++, and I barely
knew about object oriented programming. My background was fine arts so it was an enormous

challenge to achieve these goals.

When I started to think about this thesis, as a CGD-major student, my idea was that it should not

necessarily be related to programming. I thought it was a great opportunity to delve deep into
interactive sound related interactive graphics and I thought it was the ideal opportunity to improve my

programming skills. It worked out really well and in the process of researching for this thesis I learned
a lot in the field of interactive multimedia, to the extent that it is critical knowledge for the job that I

have today. Moreover i have created and maintain relationships with members of the community
related to Openframeworks, that I maintain nowadays.

During my thesis presentation at the Imagine RIT Exhibit, the interactive project was manipulated for
a relatively large audience and they all enjoyed playing and interacting with it. They liked how the

balls bounced with the boundaries of the objects to make sound, which was the primary objective of
the project.

This thesis project was also an exhibit at Sonar Festival and Vigotransforma Festival in Spain. In both
cases the project was used and projected on buildings facades, bringing to life the original concept

which this thesis was based upon, and it came out well.

24

7.Bibliography

Maeda, J. (2004). Creative Code. CA: Thames & Hudson

O`Sullivan, D., Igoe, T. (2004). Physical computing. CA: Thomson Course Technology

Greenberg, I. (2007). Processing. Creative Coding and Computational Art. CA: Friendsof

Reas, C., Fry, B. (2007). Processing. A programming handbook for visual designers and artists. CA:
The MIT Press

William Flake, G. (2000). The Computational Beauty of Nature. CA: The MIT Press

Fry, B. (2007). Visualizing data. CA: O'Reilly

Igoe, T. (2007). Making things talk. CA: O'Reilly

25

Appendix A. Coding
Openframeworks

Warping Camera View:

In order to match the projection with the physical space and the image that records the camera it is
necessary to move the boundaries of the camera frame to match the boundaries of the frame that is

projected. In order to achieve this we created a user interface by using four points that draw a
rectangle, making it possible to adapt the frame of the image that is recorded by the camera to match

the projection.

1. // HSV
2. void laserTracking::mousePressed(int x, int y, int button){
3. //this is not the best way
4. activePointIn = -1;
5.
6. float smallestDist = 999999;
7. ! float clickRadius = 10;
8.
9. ! for (int j = 0; j < 4; j++){
10. ! ! ofPoint inputPt;
11. ! ! inputPt.x = srcPositions[j].x + topLeftPos.x;

26

12. ! ! inputPt.y = srcPositions[j].y + topLeftPos.y;
13. ! ! inputPt.z = 0;
14. ! ! float len = sqrt((inputPt.x - x) * (inputPt.x - x) +
15. (inputPt.y - y) * (inputPt.y - y));
16. ! ! if (len < clickRadius && len < smallestDist){
17. ! ! ! activePointIn = j;
18. ! ! ! smallestDist = len;
19. ! ! }
20. ! }
21. }
22.

23. void laserTracking::mouseDragged(int x, int y, int button){
24. if (activePointIn > -1){
25. srcPositions[activePointIn].x = x - topLeftPos.x;
26. srcPositions[activePointIn].y = y - topLeftPos.y;
27. ! }
28. }

Laser tracking:
For doing laser tracking, the aplication first has to convert the incoming image from the camera to

HSV values. Then it looks pixel by pixel to determine if anyone of them is between the maximum and
minimum HSV values of green color, that where setup previously. If they are inside this range they

are converted to white color, and if they are not, they are converted to black. Then the dilate function
is called to make the blob (a group of pixels of the same color that are neighbors) bigger and finally

findCountour function is called to find the blob, that will be the pointer for the lasers:

1. // HSV
2. colorImgHSV = colorImg;
3. colorImgHSV.convertRgbToHsv();
4. colorImgHSV.convertToGrayscalePlanarImages(hueImg, satImg, valImg);
5. !
6. // Perform tracking calculations
7. unsigned char * huePixels = hueImg.getPixels();
8. unsigned char * satPixels = satImg.getPixels();
9. unsigned char * valPixels = valImg.getPixels();
10. int nPixels = widthInput * heightInput;
11. !
12. // Look every pixel in order to find the one between min and max HSV values

previously setup
13. for (int i = 0; i < nPixels; i++){
14. if ((huePixels[i] >= minHue && huePixels[i] <= maxHue) &&
15. (satPixels[i] >= minSat && satPixels[i] <= maxSat) &&
16. (valPixels[i] >= minVal && valPixels[i] <= maxVal)){
17. colorTrackedPixels[i] = 255;
18. } else {
19. colorTrackedPixels[i] = 0;

27

20. }
21. }
22. !
23. trackedTexture.setFromPixels(colorTrackedPixels, widthInput, heightInput);
24. // dilate white pixels, it will make the blob bigger.
25. trackedTexture.dilate();
26. trackedTexture.dilate();
27. warpedTrackedTexture.warpIntoMe(trackedTexture, srcPositions, dstPositions);
28. !
29. // ******Blobs
30. // find contours which are between the size of 30 pixels and 1/3 the w*h pixels.
31. contourFinder.findContours(warpedTrackedTexture, blobSize,

(widthInput*heightInput)/3, 30, false);!

Interacion areas:
The mapping effect is done by drawing the areas that are going to be interaction spots. By pointing

the laser and moving it along the boundaries of the space limited by its shape, the program records
points that later draw the shape. Once these areas are drawn and set, we can adjust them by moving

their points.

28

1. //----- Function that creates areas. If we are already creating an area, we add
points to that area, if not, we create a new area and add it to the areaList
vector

2. void imageProjection::createArea(){
3. ! if(letCreateArea){
4. ! if(checkLaser){
5. ! if(creatingArea){
6. areaList[areaOnCreation].build(laserPosition);
7. ! }else{
8. ! areaList.push_back(area());!
9. ! ! areaOnCreation = areaList.size()-1;
10. ! ! areaList[areaOnCreation].create(laserPosition, areaResolution);
11. ! ! creatingArea = true;
12. ! }
13. ! }else{
14. ! if(creatingArea){
15. ! areaList[areaOnCreation].finishBuilding();
16. ! }
17. ! creatingArea = false;
18. ! }
19. ! }
20. }

1. //----- Function that creates one area, located at area class. It sets an initial
point at laser coordinates and a resolution value that is how often it creates a
point.

2. void area::create(ofPoint _lPos, float _ar){
3. ! setAreaVertex(_lPos);
4. ! setLineVertex(_lPos);
5. ! setAreaTimer = ofGetElapsedTimeMillis();
6. ! setLineTimer = ofGetElapsedTimeMillis();
7. !
8. ! areaResolution = _ar;
9. }

1. //----- Function that builds an area. It adds new points to the area by calling
the function setAreaVertex

2. void area::build(ofPoint _lPos){
3. ! if((ofGetElapsedTimeMillis() - setAreaTimer) > areaResolution){
4. ! ! setAreaVertex(_lPos);
5. ! ! setAreaTimer = ofGetElapsedTimeMillis();
6. ! }
7. ! // Set line vertex sequenced.
8. ! if((ofGetElapsedTimeMillis() - setLineTimer) > LINERESOLUTION){
9. ! ! setLineVertex(_lPos);
10. ! ! setLineTimer = ofGetElapsedTimeMillis();
11. ! }
12. ! drawCreationLine(_lPos);

29

13. }

1. //----- Function that add points to an area
2. void area::setAreaVertex(ofPoint _lPos){
3.
4. ! // We add a new point to the Area's vertex array (type vector).
5. ! areaVertexList.push_back(_lPos);
6. ! // We set the max and min coordinates of the area
7. ! setSurroundingBox(_lPos);
8. }

Bounce balls:

Bounce, friction and mass balls all extend ball class. Bounce balls are the more complex of them
because we have to deal with non orthogonal collision. To resolve this, we followed the code that Ira

Greenberg wrote on Processing: Creative Coding and Computational Art (Foundation)

1. // Loop through all the balls
2. for(int i=0; i<ballList.size(); i++){
3. // check if the current ball is a bounce ball
4. if(ballList[i].getBounce()){! !
5. // create another loop to have more balls to compare with
6. for(int j=i+1; j<ballList.size(); j++){
7. if(ballList[j].getBounce() && (ballList[i].getIsMoving() || ballList

[j].getIsMoving())){
8. // we call the functions that manage all the collision work.
9. ballList[i].checkObjectCollision(ballList[j]);
10. ! ! ballList[j] = ballList[i].getCollBall();
11.
12. ! ! if(ballList[i].getKillMe() && ballList[i].getDissapeared()){
13. ! ! ballList[i].killSynth();
14. ! ! ! ballList.erase(ballList.begin()+i);
15. ! ! }! ! !
16. ! ! }
17. }
18. }
19. }!!

1. // Main collision function
2. void ball::checkObjectCollision(ball oBall){
3.
4. if(creationFinished && oBall.creationFinished){
5. ofVec2f bVect;
6. ! bVect.set(oBall.x - x, oBall.y - y);
7. ! float bVectMag = sqrt(bVect.x * bVect.x + bVect.y * bVect.y);
8.
9. if(bVectMag < r + oBall.r && !dissapear && !oBall.getDissapeared()){

30

10.
11. ! if(collided){
12. ! ! dissapear = true;
13. }
14. ! ! if(oBall.getCollided()){
15. ! ! oBall.setDissapeared(true);
16. ! ! }
17.
18. ! ! if(!collided && !dissapear && !oBall.getCollided() && !

oBall.getDissapeared()){
19.
20. // We manage audio and visualization staff. We create a wave ball

to draw and see expansive waves that surrender the ball
21. ! ! if(ofGetElapsedTimeMillis() - extressTime > 300){
22. ! ! setPan();
23. sendOscMessage("collision");
24. oBall.setPan();
25. ! oBall.sendOscMessage("collision");
26. waveList.push_back(wave());
27. waveList[waveList.size()-1].setup(x, y, r, cYr, cYg, cYb);
28. oBall.addWave(oBall.x, oBall.y, oBall.r, oBall.getRcolor(),

oBall.getGcolor(), oBall.getBcolor());
29. //dissapear = true;
30. extressTime = ofGetElapsedTimeMillis();
31. }
32.
33. // Math that deal with collision!
34. float theta = atan2(bVect.y, bVect.x);
35. float sine = sin(theta);
36. float cosine = cos(theta);
37.
38. ball bTemp0;
39. ball bTemp1;
40. bTemp1.x = cosine * bVect.x + sine * bVect.y;
41. bTemp1.y = cosine * bVect.y - sine * bVect.x;
42.
43. // rotate Temporary velocities
44. ofVec2f vTemp0;
45. ofVec2f vTemp1;
46. vTemp0.x = cosine * v.x + sine * v.y;
47. vTemp0.y = cosine * v.y - sine * v.x;
48. vTemp1.x = cosine * oBall.v.x + sine * oBall.v.y;
49. vTemp1.y = cosine * oBall.v.y - sine * oBall.v.x;
50.
51. ofVec2f vFinal0;
52. ofVec2f vFinal1;
53. // final rotated velocity for b[0]
54. vFinal0.x = ((m - oBall.m) * vTemp0.x + 2 * oBall.m * vTemp1.x)

31

55. / (m + oBall.m);
56. vFinal0.y = vTemp0.y;
57. // final rotated velocity for b[0]
58. vFinal1.x = ((oBall.m - m) * vTemp1.x + 2 * m * vTemp0.x)
59. / (m + oBall.m);
60. vFinal1.y = vTemp1.y;
61.
62. // hack to avoid clumping
63. bTemp0.x += vFinal0.x;
64. bTemp1.x += vFinal1.x;
65.
66. // rotate balls
67. ball bFinal0;
68. ball bFinal1;
69. bFinal0.x = cosine * bTemp0.x - sine * bTemp0.y;
70. bFinal0.y = cosine * bTemp0.y + sine * bTemp0.x;
71. bFinal1.x = cosine * bTemp1.x - sine * bTemp1.y;
72. bFinal1.y = cosine * bTemp1.y + sine * bTemp1.x;
73.
74. // update balls to screen position
75. oBall.x = x + bFinal1.x;
76. oBall.y = y + bFinal1.y;
77. x = x + bFinal0.x;
78. y = y + bFinal0.y;
79.
80. // update velocities
81. v.x = cosine * vFinal0.x - sine * vFinal0.y;
82. v.y = cosine * vFinal0.y + sine * vFinal0.x;
83. oBall.v.x = cosine * vFinal1.x - sine * vFinal1.y;
84. oBall.v.y = cosine * vFinal1.y + sine * vFinal1.x;
85. }
86. ! ! !
87. collided = true;
88. oBall.setCollided(true);
89.
90. }else if(collided){
91. collided = false;
92. }else if(oBall.getCollided()){
93. oBall.setCollided(false);
94. }
95. }
96. ballCollList[0] = oBall;
97. }

32

OSC communication:
OSC is the protocol used for communicating the application that deals with graphics and interaction

(Openframeworks) with the application that deals with audio (Supercollider). Openframeworks works
as the sender and Supercollider as the receiver (although they both send and receive).

Sender: Openframeworks

OSC messages are sent by the balls when they are created, when they collide between them or with
other balls, when they are of type “friction ” and they move through the screen and they die. they use

the function sendOscMessage() that is located in the ball class.

1. // send regular OSC message
2. void ball::sendOscMessage(string _type, string _action){
3. if(_type == "collision"){
4. ofxOscMessage m;
5. m.setAddress("/collision");
6. m.addStringArg("true");
7. m.addIntArg(sample);
8. m.addFloatArg(vol+0.4);
9. m.addFloatArg(pan);
10. senderOsc.sendMessage(m);
11. }
12. if(_type == "friction"){
13. ofxOscMessage w;
14. w.setAddress("/friction");
15. w.addStringArg(_action); // parameter 1
16. w.addIntArg(myId);! // parameter 2
17. w.addIntArg(mySoundId); // parameter 3
18. w.addIntArg(sample); // parameter 4
19. w.addFloatArg(vol); // parameter 5
20. w.addFloatArg(pan); // parameter 6
21. w.addFloatArg(position); // parameter 7
22. w.addFloatArg(pitch); // parameter 8
23. senderOsc.sendMessage(w);
24. }
25. if(_type == "kill"){
26. ofxOscMessage o;
27. o.setAddress("/kill");
28. o.addStringArg("true");! ! // parameter 1
29. o.addIntArg(myId);!! ! // parameter 2
30. o.addIntArg(mySoundId);! ! // parameter 3
31. senderOsc.sendMessage(o);
32. }
33. }

1. // send OSC message for deleting all balls
2. void imageProjection::sendDeleteAllSoundsOscMsg(){

33

3. ofxOscMessage killAllMsg;
4. killAllMsg.setAddress("/killall");
5. killAllMsg.addStringArg("true");! ! // 1
6. sender.sendMessage(killAllMsg);
7. }

1. // Receive OSC message
2. void imageProjection::receiveOsc(){
3. while(receiver.hasWaitingMessages()){
4. ofxOscMessage m;
5. receiver.getNextMessage(&m);
6. if(m.getAddress()=="/soundId"){
7. int ballId = m.getArgAsInt32(0);
8. int soundId = m.getArgAsInt32(1);
9. ballList[ballId].setSoundId

(soundId);!! ! ! ! ! !
10. }
11. }
12. }

Receiver: Supercollider
1. //SETUP
2. (
3. // read sound files into buffers
4. m = Array.with(Buffer.read(s, "sounds/friction01.aiff"), Buffer.read(s, "sounds/

friction_02.aiff"), Buffer.read(s, "sounds/friction_03.aiff"), Buffer.read(s,
"sounds/friction_04.wav"));

5.
6. n = Array.with(Buffer.read(s, "sounds/01/01.aif"), Buffer.read(s, "sounds/

02/02.aif"), Buffer.read(s, "sounds/03/03.aif"), Buffer.read(s, "sounds/
04/04.aif"));

7. b = Buffer.read(s, "sounds/04/01");
8.
9. // Synths List
10. l = List.new;
11.
12. // OSC
13. // Send Port and setup
14. y = NetAddr.new("127.0.0.1", 12345);
15.
16. // Receive Port and setup
17. z = NetAddr.new("127.0.0.1", 57120);
18.
19. // *** Play buffer ** S N A P S **

34

20. SynthDef(\playBuf,{ arg out = 0, bufnum, amp=0.7, pan=0.0;
21. ! var signal, env;
22. ! env = EnvGen.ar(Env.perc, doneAction:2); // envelope
23. ! signal = PlayBuf.ar(1, bufnum, BufRateScale.kr(bufnum), doneAction:2) * env;
24. ! signal = Pan2.ar(signal, pan) * amp;
25. !Out.ar(out, signal);
26. }).load(s);
27.
28. // *** Play buffer ** W A R P S **
29. // pointer between 0 an 1
30. // pitch between 0.5 and 2.0 (octave down - octave up)
31. SynthDef(\warp, {arg out = 0, bufnum, amp=0.7, pan=0.0, pointer = 0.1, pitch =

1.0, gate = 1;
32. ! var signal, env;
33. ! env = EnvGen.ar(Env.asr(0.001, 2, 3, -3), gate);
34. ! signal = Warp1.ar(1, bufnum, pointer, pitch, 0.1, -1, 8, 0.15, 1.0);
35. ! signal = Pan2.ar(signal, pan) * amp * env;
36. ! Out.ar(out, signal);
37. }).send(s);
38.
39. // Receive OSC and play ** S N A P ** the sound
40. // /collision msg[]:
41. // msg[1] = true / false
42. // msg[2] = sample
43. // msg[3] = vol
44. // msg[4] = pan
45. // msg[4].postln;
46. o = OSCresponder.new(nil, "/collision", { |time, resp, msg|
47. ! if(msg[1] == 'true'){
48. ! ! x = Synth(\playBuf, [\bufnum, n[msg[2]].bufnum, \amp, msg[3], \pan, msg

[4]]);
49. ! };
50. }).add;
51.
52. // Receive OSC and ** KILL ** the synth
53. // /kill msg[]:
54. // msg[1] = true / false
55. // msg[2] = ballId
56. // msg[3] = soundId
57. q = OSCresponder.new(nil, "/kill", { |time, resp, msg|
58. ! if(msg[1] == 'true'){
59. ! ! l[msg[3]].free;
60. ! };
61. }).add;
62.
63. // Receive OSC and ** KILL ALL ** the synths
64. // /killall msg[]:
65. // msg[1] = true / false

35

66. r = OSCresponder.new(nil, "/killall", { |time, resp, msg|
67. ! if(msg[1] == 'true'){
68. ! ! l.do({ arg item, i; item.free; });
69. ! ! l.clear;
70. ! };
71. }).add;
72.
73. // Receive OSC and ** W A R P ** the sound
74. // /friction msg[]:
75. // msg[1] = 0 / 1 / 2 (starts / set / stops)
76. // msg[2] = ballId
77. // msg[3] = soundId
78. // msg[4] = sample
79. // msg[5] = vol
80. // msg[6] = pan
81. // msg[7] = pointer
82. // msg[8] = pitch
83. p = OSCresponder.new(nil, "/friction", { |time, resp, msg|
84. ! if(msg[1] == 'play'){
85. ! ! w = Synth(\warp, [\bufnum, m[msg[4]].bufnum, \ballid, msg[2], \soundId,

msg[3], \amp, msg[5], \pan, msg[6], \pointer, msg[7], \pitch, msg[8]]);
86. ! ! l.add(w);
87. ! ! // send "/soundId": ballId, soundId
88. ! ! y.sendMsg("/soundId", msg[2], l.size-1);
89. ! };
90. ! if(msg[1] == 'update'){
91. ! ! l[msg[3]].set(\pan, msg[6], \pointer, msg[7], \pitch, msg[8], \gate, 1);
92. ! };
93. ! if(msg[1] == 'stop'){
94. ! ! l[msg[3]].set(\gate, 0);
95. ! };
96. }).add;
97.
98. // Background bass sound
99. SynthDef(\playBufMonoLoop, {| out = 0, bufnum = 0, rate = 1 |
100. var scaledRate, player;
101. scaledRate = rate * BufRateScale.kr(bufnum);
102. player = PlayBuf.ar(1, bufnum, scaledRate, loop: 1, doneAction:2);
103. Out.ar(out, player)
104. }).play(s, [\out, 0, \bufnum, b.bufnum, \rate, 1]);
105.)

36

Appendix B. Thesis Proposal

Thesis Proposal
A computer vision system for doing interactive-creative musical installations: A portable computer

vision system based on video projection that allows the interaction with the projection itself, with the
physical space where it is projected and with multiple users.

Abstract

The thesis is about building a computer vision prototype for allowing interaction using a video
projection in order to find new ways for playing sounds. The interaction is done between the

projection and the physical surface where it is projected, the user and the content of the projection. It
is done using the c++ Openframeworks library, a video projector, an infrared light, puredata or max/

msp for manipulating sound and some kind of physical interface controller like Laser or wii. The
areas that are going to be applied in this thesis are interactive installation, physical computing, GUI,

computer vision, creative coding and new interfaces for musical expression.

Problem Statement
Basically, what this thesis is achieving is transforming the video projection into a musical user

interface. We are not talking here about the content of the video projection but the projection itself.
Usually, the surface where a video, game, animation, interactive work, etc is projected is a solid plane

without any kind of significant information. Normally it is a white wall, or a screen specially designed
for receiving the light of the projector, but rarely the space where the images are projected is

considered as one more elements that could be used with aesthetics purposes. This becomes especially
true when we talk about musical interfaces. Therefore, this thesis will be researching about how the

content of a video projection will interact with the physical space of the surface or object where this
content is projected, and also how users can interact with both space and content projection for

making music. In addition, the system must be mobile and able to adapt to different physical spaces
fast, giving the idea of an autonomous adaptable system. For instance, imagine that somebody is

projecting and interactive animation about several balls moving through the screen. Imagine that this
animation in being projected on the facade of a building, and each time any ball hits a window, it

change its direction and make sound. Also imagine that people from the street can create more balls
just pointing with their hand where they want to create the balls, or thatpeople can use the windows

like buttons. This is basically what this thesis is about, a system for developing interactive musical
installations that will deal with the interaction between the projection itself, the physical space where

images are projected and the people that is controlling what is projected.
For solving this problem, there will be used the concepts under the computer vision technology using

infrared cameras, laser, video projectors and maybe other kind of physical interfaces like the wii
remote. The software that will be used for mapping and interpreting the data from the physical space

will be a c++ library called Openframeworks that is being developed by Zachary Lieberman and

37

Theodore Watson, and that is being used for several creators for building interactive artistic works and
for doing experimental creative code. Moreover, because this library is on its begging phase of

development, it will be also an additional goal to contribute to extend its possibilities.
This thesis idea came after combine 3 projects about computer vision and interaction. The first one

was the Graffiti research lab project, developed at the eyebeam lab by F.A.T (Free art and
technology), and using the Openframeworks library. This project is about doing graffiti in public

spaces using a laser and a video projector. The main idea that was interesting for the thesis is how
people interact with the projector and what kind of physical interface they use. Moreover it is

interesting the software that they use and because it is open, how easy is work with it to push it
further. The second one was the project called Artificial Dummies done by the Italian group called

DOMO. This project is about a projection of some animations that interact with facades of buildings.
The idea that was taken from this project is the interaction between the projection and the physical

space
upon which it is projected. The last one was the project called Funky forest by Theodore Watson,

where people interact with a video projection. The idea taken from this project is the interaction
between the projection and people.

After doing some research, I found that the Graffiti research lab has done some investigations with the
combinations of these interactions (physical space, video projector and people) that they applied in

the project called Interactive Architecture. This is the reason I would like to push these ideas further,
using this technology for also creating music and for playing not only with architectural spaces but

also with other kind of physical surfaces.

Scope
The areas that are going to be applied in this thesis are interactive installation, physical computing,

GUI, computer vision, creative coding and new interfaces for musical expression. I am going to deal
with tools for doing physical interfaces like using laser for controlling graphics or maybe other kind

of remote controls like wii. It will also be important dealing withGUI concepts in order to design new
interfaces for interacting with the physical spaces. The technology for taking data from the physical

space is going to be computer vision, using infrared or regular cameras and concrete computer vision
techniques like detecting bobs. Because this is going to be a kind of musical interface, it is interactive,

uses new technology and force people to play music on a new different way. It can also be consider
that this thesis project is also dealing with concepts from NIME (new interfaces for musical

expression).

38

Literature Survey

Books

Making things talk
by Tom Igoe

O'Reilly 2007
This book is about connecting several hardware and software in order to communicate them and share

information. The final goal is helping on the technologic development of creative and interactive
works. For instance, learning how to communicate two different softwares will help me to convert

graphical data to sound data.

Physical computing
by Dan O`Sullivan and Tom Igoe

Thomson Course Technology 2004
This book had a special meaning for the independent artistic community because it put together the

Do It Yourself (DIY) way of thinking and the new technology related to hardware. After reading this
book a lot of people interested on art, began to develop interactive projects. So, this book talks about

building physical interfaces to establish an interaction between machine and human. It was very
useful to me in order to gain some basic knowledge about electronics.

Visualizing data

by Ben Fry
O'Reilly 2007

This book is about taking data from some kind of source and how to transform this data into
something more readable for the user. This book is very useful for learning how to parse raw data, like

for instance xml, csv or tsv files that are standards and everybody use them, in order to create
interactive graphics for manage this data. It uses processing language (Ben Fry is one of the guys who

is developing processing). It is also a very useful resource for building graphical user interfaces like
buttons, maps,networks, graphs, etc... It will help me to learn how to read data from a source and

convert it to something more. Because during the development of my thesis I will be dealing with
different ways of visualize the same data, the knowledge I will gain from this book will become

essential.

Processing. A programming handbook for visual designers and artists
by Casey Reas and Ben Fry

The MIT Press 2007
This is a manual for the programming language called Processing. It is written by the people who

develop the Processing library, Ben Fry and Casey Reas. This book is not only a huge tutorial about

39

how to make computer graphics using code, but also it is a good reference book for learning concepts
like movement, distance, time, physics, biology, color,... from the point of view of the math.

Moreover, it is a good way for learning the basics of writing code. I have already read this book, and
it was very useful to me because with this book I learned how to write code and its basic concepts.

Processing. Creative Coding and Computational Art

by Ira Greenberg
Friendsof 2007

This book is very similar to the one written by Casey Reas and Ben Fry, that I referenced before. It is
about the processing code and explains how to use it. This book was also useful to me because it

allowed me to approach the same topic from a different point of view. This combination of using two
similar books for a same purpose was very useful because when I didn't understand what one book

said, I had another resource to look for the same information, which gave me a more wide view in
some aspects.

Creative Code

by John Maeda
Thames & Hudson 2004

Creative Code is a book written by John Maeda, and it shows works that students did under the MIT
Media Lab umbrella. It is a good way to see works where people use technology in a complete

innovative and strange way, just because they are trying to see the aesthetic side of the technology. I
think that this is the main idea I could see on this book. How technology's aesthetic can expand the

creative side of the technology and make us see things from a new point of view. It helped me to
expand my conceptions about technology and don't be afraid on thinking out of the box.

Online Documentation

Openframeworks: Documentation
Interactive Architecture

Graffiti Research Lab
October, 2008

http://graffitiresearchlab.com/?page_id=32#video
This project is about doing generative graffiti interacting between a video projection and a physical

space. This is the base from where the thesis will be built. This is the only project that I have found
that combines the interaction between the projection, the physical space and the user, and because

they use open technology, it is easy to implement what they have done and push it further.

Artificial.Dummies: A.I. enhanced graffiti

40

http://graffitiresearchlab.com/?page_id=32#video
http://graffitiresearchlab.com/?page_id=32#video

TODO
October, 2008

http://www.todo.to.it/projects.php?id=28&
The aim of this project is extend the idea of graffiti interacting with the physical surface where images

are projected. They use kind of artificial intelligence that is just some flocking behaviors that interact
with the physical space. This is the project that was the main inspiration for doing this thesis, because

when I realized that projections could interact with the surfaces where they were projected, a whole
new world appeared in front of my eyes.

Funky forest

Theodore Watson
October, 2008

http://muonics.net/site_docs/work.php?id=41
This is an interactive installation where the walls of a room are complete covered with video

projections. Therefore, the people who enter the room interact with the projections, giving the
sensation that they are interacting inside a new projected environment. I use this project as a reference

on how the video projections can interact with people.

Zach Lieberman and Theodore Watson
September, 2008

http://www.openframeworks.cc/documentation
This is the documentation webpage of the Openframeworks library. The Openframeworks library was

created to make easier write c++ code for doinginteractive and creative works. This is the library that
I am going to use to develop the multitouch system and this is the software that I am going to use for

receiving physical data and convert it to a graphical environment. This online documentation of the
library is my primary resource that I look when I want to something about the library. It is like the

Openframework’s help.

Openframeworks: Forum
Openframeworks users

September, 2008
http://www.openframeworks.cc/forum

The Openframeworks forum is the way I keep in contact with other people that are using the same
technology that I am. It is also very useful for keep myself updated with the new projects that people

are developing. Moreover it is an indispensable place where I can ask for help, and also the first place
where I will get feedback from my works. Depending on the interaction in the forum and what the

other people tell me, my thesis change in several ways.

Touchkit

41

http://www.todo.to.it/projects.php?id=28&
http://www.todo.to.it/projects.php?id=28&
http://muonics.net/site_docs/work.php?id=41
http://muonics.net/site_docs/work.php?id=41
http://www.openframeworks.cc/documentation
http://www.openframeworks.cc/documentation
http://www.openframeworks.cc/forum
http://www.openframeworks.cc/forum

Nortd
September, 2008

http://touchkit.nortd.com/
Touchkit is a project developed by Nortd, a research and development studio from Austria and New

York City. Working along with the Eyebeam lab in New York they have done a multitouch kit using
the Openframeworks library. This multitouch system is open hardware and software, which means

that everybody can make one by them. That is why this project was so interesting for my thesis,
because it allowed me to build a multitouch system prototype for experimenting by my own and

without spending too much money.

Vimeo
Vimeo users

September, 2008
http://www.vimeo.com

The Vimeo webpage is a social site where users can upload and share videos that were created by
them. This is the place where I found most of the projects that are related to multitouch,

Openframeworks, sound-visualization, Puredata, or interactive art. Moreover, this is the best way I
found to track the new projects that people is doing with this technology, thanks to the rss tag

syndication. For instance, I am syndicated to these three tags from Vimeo, which allow me to be
informed of the new videos that

people have uploaded, and that are related to my thesis project: http://www.vimeo.com/
tag:openframeworks http://www.vimeo.com/tag:physicalcomputing http://www.vimeo.com/

tag:tangibleinteraction

42

http://touchkit.nortd.com
http://touchkit.nortd.com
http://www.vimeo.com
http://www.vimeo.com
http://www.vimeo.com/tag:openframeworks
http://www.vimeo.com/tag:openframeworks
http://www.vimeo.com/tag:openframeworks
http://www.vimeo.com/tag:openframeworks
http://www.vimeo.com/tag:physicalcomputing
http://www.vimeo.com/tag:physicalcomputing
http://www.vimeo.com/tag:tangibleinteraction
http://www.vimeo.com/tag:tangibleinteraction
http://www.vimeo.com/tag:tangibleinteraction
http://www.vimeo.com/tag:tangibleinteraction

Project Description / Methodology
The methodology used for doing this thesis will consist basically in dividing the process in two big

parts. The first one will be oriented to develop a very basic physical-hardware prototype, and the
second one will be focused on building the software that will make things happen.

The first step will be building the physical prototype. For doing that it will be necessary setting up the
video projector and the infrared cameras as well as make it interact with the physical space and the

user physical controller interface. The resulting data of these interactions must be sent to audio
software in order of making sound. Therefore, it will be necessary to write a very basic program for

communicating all these parts together and for testing if everything is working fine.
The second step will be developing a more advanced program that could extend the possibilities of

interacting with the space and the user. It has to be portable, so it can be adapted rapidly to different
spaces, it also has to communicate well with other audio software and it has to have a computer vision

implementation. For doing all of this I am going to use the Openframeworks environment, which is a
c++ library specially designed for developing creative interactive and experimental projects. Also I

am going to use the OSC protocol to communicate Openframeworks with Puredata, because this last
one is open audio software that is specially designed for doing interactive and generative sound. For

the computer vision part I am going to use the OpenCV addon for Openframeworks that works with
the technology of “finding bobs” that is useful for tracking things on an image, like for instance

tracking the color from a video.
Because this thesis is based on other open projects that are being developed, it will not be necessary to

start the development from the beginning. So basically what I am going to do is continue the work
that have been done by other people. That means that I am going to use the code and hardware

development done by projects like the Graffiti Research Lab or Theodore Watson as the base starting
point.

Limitations

The limitations that can be found while this thesis is developed are related to the controller user
interface, the characteristics of the surface where images are projected andhow complex is the sound

interaction. With regard to the user controller, the Graffiti Research Lab has been using a Laser
because they just need to track the position of the pointer, but we will also need to take other data

from the user interaction, like kind of click events or some more analog information. For that reason
maybe it is necessary to develop one more controller or simply add some buttons to the Laser. It will

also be necessary the possibility of identify different lasers, so the system can interact with several
independent subjects at the same time. One way to solve this problem could be use laser of different

colors.
The surface where the images are projected can also be considered a limitation. But for this thesis it

will be consider like another aesthetic element, that must affect how the interaction happen.

43

Another limitation is the sound interaction. There will be not possible doing complex sound
compositions because the user interaction will not be so accurate. However, this is not the main

purpose of this project, which is more an interactive art installation than a musical tool.

Marketing plan
Because this is an experimental project, once the prototype is finished and showed to the audience, it

will be sent to several new media festivals like NIME(New Interfaces for Musical Expression
festival), Sonar, Ars electronica, etc... Moreover, because I will use some kind of technology that is

beginning to be developed (Openframeworks is still on a pre-relase version (0.05)), I know some
institutions that could be interested on showing some work built with these tools, like medialab-prado

in Spain, Eyebeam in NYC, or MTG-UPF in Spain. Actually they were doing some workshops using
these tools, and because no too much people know how to use them, it could be a good change to

show these projects on such important places like the ones listed above.

Budget
Video projector $ 600.00

Infrared camera $ 154.00
Lasers $ 50.00

Sound system $ 550.00
Total $ 1354.00

Software and hardware requirements

+ Macintosh G5.
+ 500 MB free disk space and 128 MB main memo.

+ Openframeworks (free software).
+ Xcode (apple development software).

+ Puredata (free software).
+ Video projector (minimum resolution: 1024 x 768)

+ IR camera (Fire-i Board Camera B/W).
+ 4 laser pointers of different colors

+ A portable table

Target audience
The target audience are musicians, artists, anybody interested in interactive art, multimedia art,

performace art, sound art, music and new technologies. Specially, this thesis is related to people who
have a special sensibility for free art and culture.

44

